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1.  Learning Outcomes 

After studying this module, you shall be able to 

 Apply the approach of canonical ensemble via partition function to two very important 

prototype systems in physics via partition function 

o A collection of harmonic oscillators (classical and quantum mechanical 

treatment) 

o Para-magnetism (classical and quantum mechanical treatment). 

 Compare the classical and quantum mechanical results obtained in the above two 

examples  and see under what conditions quantum mechanical results approach classical 

results. 

 To appreciate equipartition theorem and virial theorems as classical canonical ensemble 

averages of the quantity 𝑿𝒂
𝝏𝑯

𝝏𝑿𝒃
, where 𝑿𝒂 and 𝑿𝒃 are any two of the phase space co-

ordinates of the system. 

 To apply equipartition theorem to derive some well-known results for systems such as 

monoatomic gas, a diatomic gas, a harmonic oscillator and a crystalline solid. 

 Derive virial theorem. 

 Understand the importance of virial in computation of equation of state of a system and 

paving way for calculating pressure of the system. 

 Calculate density of states over energy for a three dimensional system of free particles in 

non-relativistic, relativistic and ultra-relativistic regime. 

2.  Introduction 

 In this module we carry forward the applications of canonical ensemble two most 

important problems of the physics: a collection of harmonic oscillators and classical 

model of para-magnetism treated as a system of N magnetic dipoles. Also we shall 

encounter two beautiful theorems called virial theorem of Clausius and equipartition 

theorem of Boltzmann. These theorems have many applications to arrive at some useful 

results in thermodynamics and statistical mechanics. 

3. Canonical Ensemble (More Applications) 

Now we will look at some more interesting applicationsof canonical ensemble and 

simplicity with results can be obtained using partition function approach.    

3.1 A System of Harmonic Oscillators 

Let us now examine a collection of N independent identical Linear harmonic oscillators 

using partition function approach as an application of canonical ensemble which  forms a 

precursor to the study the statistical mechanics of  a collection of photons in black body 

radiation and a collection of phonons in theory of lattice vibrations in solids.  We treat the 

oscillators as first as classical entities and later as quantum mechanical entities to get the 

thermodynamics of the system and compare the results for any change in going from 

classical system of harmonic oscillators to quantum mechanical system of harmonic 

oscillators. 
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The Hamiltonian for a this set of identical linear harmonic oscillators, each having mass 

m and frequency 𝝎 is given by  

 

 𝑯 =   
𝒑𝒊
𝟐

𝟐𝒎
+
𝟏

𝟐
𝒎𝝎𝟐𝒒𝒊

𝟐 

𝑵

𝒊=𝟏

 

(1) 

 

(a) Classical Approach  

 Now we are ready to write a one particle partition function for the recalling the 

definition in the Module 13. 

 
𝒁𝟏 =  

𝟏

𝒉
 𝒆−𝜷𝑯𝒊 𝒒𝒊,𝒑𝒊 𝒅𝟑𝒒𝒊𝒅

𝟑𝐩𝐢 

=  
𝟏

𝒉
 𝒆−

𝜷𝒑𝒊
𝟐

𝟐𝒎𝒅𝟑𝒑𝒊 𝒆
−
𝟏

𝟐
𝜷𝒎𝝎𝟐𝒒𝒊

𝟐

𝒅𝟑𝐪𝐢 

(2) 

 

𝒁𝟏 =
𝟏

𝒉
 
𝟐𝒎𝝅

𝜷
 

𝟏

𝟐

 
𝟐𝝅

𝜷𝒎𝝎𝟐
 

𝟏

𝟐

=
𝟏

𝜷ℏ𝝎
 

(3) 

Here 𝜷 =
𝟏

𝒌𝑩𝑻
. The partition function for the collection of independent N linear 

harmonic oscillators can be written as 

 𝒁 = 𝒁𝟏
𝑵 =  𝜷ℏ𝝎 −𝑵 (4) 

Now all thermodynamic properties can be derived  

Helmholtz free energy (F) 

 
 𝑭 = −𝒌𝑩𝑻 𝐥𝐧𝒁 =𝑵𝒌𝑩𝑻 𝐥𝐧𝜷ℏ𝝎 =  𝑵𝒌𝑩𝑻 𝐥𝐧

ℏ𝝎

𝒌𝑩𝑻
 

(5) 

Entropy (S) 

 
 𝑺 = − 

𝝏𝑭

𝝏𝑻
 
𝑵,𝑽

= 𝑵𝒌𝑩  𝟏 − 𝐥𝐧
ℏ𝝎

𝒌𝑩𝑻
  

(6) 

Internal Energy (E=F+TS) 

  𝑬 = 𝑵𝒌𝑩𝑻 (7) 
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This result is in accordance with law of equipartition of energy, according to which 

each quadratic term in the Hamiltonian for each harmonic oscillator contributes a 

term 
𝟏

𝟐
𝒌𝑩𝑻. 

Pressure (P)  

 
𝑷 = − 

𝝏𝑬

𝝏𝑽
 
𝑵,𝑻

= 𝟎 
(8) 

 

Chemical Potential (𝝁) 

 
𝝁 =  

𝝏𝑭

𝝏𝑵
 
𝑽,𝑻

= 𝑵𝒌𝑩𝑻 𝐥𝐧
ℏ𝝎

𝒌𝑩𝑻
 

(9) 

Specific heat (𝑪𝒑 = 𝑪𝑽) 

 
𝑪𝑷 = 𝑪𝑽 =  

𝝏𝑬

𝝏𝑻
 
𝑵,𝑽

= 𝒌𝑩𝑻 
(10) 

 

(b) Quantum mechanical approach 

Quantum mechanically, each linear harmonic oscillator is characterized by energy eigen 

value given by 

 
𝝐𝒏 =  𝒏+

𝟏

𝟐
 ℏ𝝎 ,𝒏 = 𝟎,𝟏,𝟐,𝟑………… 

(11) 

 

Once again single oscillator partition function can be written as 

 

𝒛𝟏 =   𝒆−𝜷𝝐𝒏

∞

𝒏=𝟎

=  𝒆− 
𝟏

𝟐
𝜷ℏ𝝎  𝒆−𝜷𝒏ℏ𝝎

∞

𝒏=𝟎

=
𝒆− 

𝟏

𝟐
𝜷ℏ𝝎 

𝟏 − 𝒆−𝜷𝒏ℏ𝝎

=  𝟐 𝐬𝐢𝐧𝐡  
𝟏

𝟐
𝜷ℏ𝝎  

−𝟏

 

(12) 

The partition function for the N Oscillator system is given by 
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𝒁 =  𝒁𝟏 

𝑵  =    𝟐 𝐬𝐢𝐧𝐡  
𝟏

𝟐
𝜷ℏ𝝎  

−𝑵

 
(13) 

 

Now we can derive all thermodynamic properties 

Helmholtz free energy (F) 

 
 𝑭 = −𝒌𝑩𝑻 𝐥𝐧𝒁 =𝑵𝒌𝑩𝑻 𝐥𝐧  𝟐 𝐬𝐢𝐧𝐡  

𝟏

𝟐
𝜷ℏ𝝎  

=  𝑵 
𝟏

𝟐
ℏ𝝎+ 𝒌𝑩𝑻 𝐥𝐧 𝟏 − 𝒆

−𝜷ℏ𝝎   

(14) 

Entropy (S) 

 
 𝑺 = − 

𝝏𝑭

𝝏𝑻
 
𝑵,𝑽

= 𝑵𝒌𝑩   
𝟏

𝟐
𝜷ℏ𝝎𝐜𝐨𝐭𝐡  

𝟏

𝟐
𝜷ℏ𝝎  

−  𝐥𝐧  𝟐 𝐬𝐢𝐧𝐡  
𝟏

𝟐
𝜷ℏ𝝎    

(15) 

Internal Energy (𝑬 = 𝑭+ 𝑻𝑺) 

 
 𝑬 = 𝑭+ 𝑻𝑺 =

𝟏

𝟐
𝑵ℏ𝝎 𝐜𝐨𝐭𝐡  

𝟏

𝟐
𝜷ℏ𝝎 =  𝑵 

𝟏

𝟐
ℏ𝝎+

ℏ𝝎

 𝒆𝜷ℏ𝝎 − 𝟏 
  

(16) 

This result is in not in accordance with law of equipartition of energy, according to 

which each quadratic term in the Hamiltonian for each harmonic oscillator 

contributes a term 
𝟏

𝟐
𝒌𝑩𝑻.  

Pressure (P)  

 
𝑷 = − 

𝝏𝑬

𝝏𝑽
 
𝑵,𝑻

= 𝟎 
(17) 

 

Chemical Potential (𝝁) 

 
𝝁 =  

𝝏𝑭

𝝏𝑵
 
𝑽,𝑻

=   
𝟏

𝟐
ℏ𝝎+ 𝒌𝑩𝑻 𝐥𝐧 𝟏 − 𝒆

−𝜷ℏ𝝎   
(18) 
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Specific heat (𝑪𝒑 = 𝑪𝑽) 

 
𝑪𝑷 = 𝑪𝑽 =  

𝝏𝑬

𝝏𝑻
 
𝑵,𝑽

=  𝑵𝒌𝑩  
𝟏

𝟐
ℏ𝝎𝜷 

𝟐

𝐜𝐨𝐬𝐞𝐜𝐡𝟐  
𝟏

𝟐
𝜷ℏ𝝎  

= 𝑵𝒌𝑩 ℏ𝝎𝜷 
𝟐

𝒆𝜷ℏ𝝎

 𝒆𝜷ℏ𝝎 − 𝟏 𝟐
 

(19) 

All these results from (5) to (9) approach classical results for 𝒌𝑩𝑻 ≫ ℏ𝝎 

 

3.1 Paramagnetism 

Let us now examine a collection of N independent identical spins sitting at different 

points using partition function approach. Each of these spins can be treated as magnetic 

dipoles with a magnetic moment 𝝁. These are distinguishable as they are sitting at 

different locations. These form a non-interacting system in the sense that each magnetic 

dipole does not experience the field of the other dipoles. These magnetic dipoles can be 

orientedin any direction with the application of external magnetic field. Since the spins 

are localized they have no kinetic energy.  The Hamiltonian of such a system consists, 

therefore, of magnetic potential energy in the presence of magnetic field 𝚮   only which can 

be written as 

 

𝑯 = − 𝝁𝒊    

𝑵

𝒊=𝟏

.𝚮    
(20) 

Here 𝝁𝒊 is the magnetic moment of the ith magnetic dipole. 

We look at the system both classically and quantum mechanically and try to get some 

well-knownresult such as Curie Law for paramagnetic systems. 

(i) A classical Treatment 

In this case equation (20) can be written explicitly in terms of orientation 𝜽𝒊 of each 

magnetic dipole as 

 

𝑯 = − 𝝁𝒊

𝑵

𝒊=𝟏

𝚮𝐜𝐨𝐬 𝜽𝒊 = −𝑵𝝁𝚮 𝐜𝐨𝐬𝜽

𝜽

 

(21) 

Now the single particle partition function can be written, remembering that three 

dimensional orientation is decided by 𝜽 and 𝝓 
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So that single dipole partition function can be written as  

 
𝒁𝟏 =  𝒆(𝜷𝝁𝚮𝐜𝐨𝐬𝜽) 

𝜽

=   𝒆(𝜷𝝁𝚮𝐜𝐨𝐬𝜽) 𝐬𝐢𝐧𝜽𝒅𝜽𝒅𝝓
𝝅

𝟎

𝟐𝝅

𝟎

 
(22) 

Putting 𝐱 = 𝐜𝐨𝐬 𝜽 we solve equation (22) to get 

 
𝒁𝟏  =   𝒆(𝜷𝝁𝚮 𝒙)𝒅𝒙𝒅𝝓

+𝟏

−𝟏

𝟐𝝅

𝟎

= 𝟒𝝅
𝐬𝐢𝐧𝐡(𝜷𝝁𝚮)

(𝛃𝛍𝚮)
 

(23) 

So the partition function of the system can be written as  

 
𝒁 =  𝒁𝟏 

𝑵  =  𝟒𝝅
𝐬𝐢𝐧𝐡(𝜷𝝁𝚮)

 𝛃𝛍𝚮 
 
𝑵

 
(24) 

Now we can calculate the thermodynamic properties using the results derived in module 

XIII. 

Helmholtz free energy (F) 

 
𝑭 = −𝑵𝐤𝐁𝐓 𝐥𝐧  𝟒𝝅

𝐬𝐢𝐧𝐡(𝜷𝝁𝚮)

 𝛃𝛍𝚮 
  

(25) 

Magnetization 𝑴 of the system 

 
𝑴 = − 

𝝏𝑭

𝝏𝚮
 
𝑻,𝑵 

= 𝑵𝐤𝐁𝐓
 𝛛(𝐥𝐧 𝐬𝐢𝐧𝐡(𝜷𝝁𝚮)  − 𝐥𝐧 𝛃𝛍𝚮 ) 

𝝏𝚮
=   

(26) 

 
 𝑴 =  𝑵 𝝁  𝐜𝐨𝐭𝐡𝜷𝝁𝚮 −

𝟏

 𝛃𝛍𝚮
 = 𝑵𝝁𝑳 𝜷𝝁𝚮  

(27) 

The mean magnetization in the direction of the magnetic field is  

 
 𝝁 =

𝑴

𝑵
= 𝝁  𝐜𝐨𝐭𝐡𝜷𝝁𝚮 −

𝟏

 𝛃𝛍𝚮
  

(28) 

Where 𝑳 𝒙 =  𝐜𝐨𝐭𝐡 𝒙 −
𝟏

  𝐱
 is the Langevin function, here 𝒙 = 𝜷𝝁𝚮 is a parameter 

giving the ratio of magnetic potential energy (𝝁𝚮)   to thermal energy (𝒌𝑩𝑻).. 
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Figure 1Langevin Function 

There are two limiting cases which provide us interesting results 

(i) Low temperature or High magnetic field limit (𝝁𝐇 ≫ 𝒌𝑩𝑻): 

In this limit Langevin function saturates to 1, figure 1, i.e all magnetic dipoles 

align in the direction of magnetic field and the net magnetization shall be  

 𝑴 =  𝑵 𝝁 (29) 

(ii) High temperature or Low magnetic field limit (𝝁𝐇 ≪ 𝒌𝑩𝑻): 

In this limit 𝐜𝐨𝐭𝐡 𝒙 =
𝟏

𝒙
+

𝒙

𝟑
−

𝒙𝟑

𝟒𝟓
+⋯ and the  Langevin function 𝑳 𝒙 ≈ 𝒙/𝟑 

Therefore, 

 
𝑴 =  𝑵

𝝁𝟐𝐇

𝐤𝐁𝑻
 

 

(30) 

In this limit susceptibility 𝝌 =
𝝏𝑴

𝝏𝑯
 becomes 

 
𝝌 =

𝝏𝑴

𝝏𝑯
=
𝑵𝝁𝟐

𝐤𝐁𝑻
=
𝑪

𝑻
 

(31) 

𝑥 

𝐿(𝑥) 
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This is famous Curie Law of para-magnetism which was experimentally 

verified to be true for copper-potassium sulphate hexahydrate. 

(i) A Quantum Mechanical treatment. 

To treat the problem of para-magnetism quantum mechanically, we must note that (i) 

magnetic moment of the particle involved of the system depends on its angular 

momentum 𝑱 (ii) magnetic moment 𝝁   and its component in the direction of magnetic field 

does not have arbitrary values but are discrete. 

If angular momentum of the system is 𝑱  its magnetic moment 𝝁    is given by  

 𝝁   = 𝝁𝑩𝒈𝑱  (32) 

Where 𝝁𝑩 =
𝒆ℏ

𝟐𝒎𝒄
 is Bohr magneton and 𝒈 is Lande factor given by 

 
𝒈 =

𝟑

𝟐
+
𝑺 𝑺+ 𝟏 − 𝑳 𝑳+ 𝟏 

𝟐𝑱 𝑱+ 𝟏 
 

(33) 

If the particles involved are electrons i.e. 𝑺 = 𝟏/𝟐 with 𝑳 = 𝟎 the total angular 

momentum 𝑱 =
𝟏

𝟐
, 𝒈 = 𝟐. On the other hand if 𝑺 = 𝟎 then 𝒈 is solely due to 𝑳 and 

𝒈 = 𝟏. 

Now if we take magnetic field in the direction  ofz-axis the component of 𝝁    in this 

direction 𝝁𝒛 is given by: 

 𝝁𝒛 = 𝒈𝝁𝑩𝒎,𝒎 = −𝑱,−𝑱+ 𝟏,… , 𝑱 − 𝟏, 𝑱  (34) 

Now we are in a position to write down the single partition function in the presence of 

magnetic field: 

 
𝒁𝟏 =  𝒆𝒈𝝁𝑩𝒎𝚮𝛃

𝒎=+𝑱

𝒎=−𝑱 
 

(35) 

The sum in equation (17) is a geometrical progression with  𝟐𝑱+ 𝟏  terms with first term 

𝒆−𝒈𝝁𝑩𝐉𝚮𝛃 and common ratio 𝒆𝒈𝝁𝑩𝚮𝛃, therefore, 𝒁𝟏 is given by 

 
𝒁𝟏 =

𝒆−𝒈𝝁𝑩𝑱𝚮𝛃 𝟏 − 𝒆𝒈𝝁𝑩𝚮𝛃 𝟐𝑱+𝟏  

𝟏 − 𝒆𝒈𝝁𝑩𝚮𝛃
 

(36) 

This can be further simplified to give 
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𝒁𝟏 =
 𝒆

−𝒈𝝁𝑩𝚮𝜷 𝑱+
𝟏

𝟐
 
− 𝒆

𝒈𝝁𝑩𝚮𝛃 𝒋+
𝟏

𝟐
 
 

 𝒆−
𝒈𝝁𝑩𝚮𝜷

𝟐 − 𝒆
𝒈𝝁𝑩𝚮𝜷

𝟐  
=
𝐬𝐢𝐧𝐡𝒈𝝁𝑩𝚮𝐣𝛃 𝟏 +

𝟏

𝟐𝑱
 

𝐬𝐢𝐧𝐡
𝒈𝝁𝑩𝚮𝑱𝜷

𝟐𝑱

 

(37) 

Putting 𝒈𝝁𝑩𝚮𝐣𝛃 = 𝒙, equation (36) becomes 

 

𝒁𝟏 = =
𝐬𝐢𝐧𝐡𝒙  𝟏+

𝟏

𝟐𝑱
 

𝐬𝐢𝐧𝐡
𝒙

𝟐𝑱

 

(38) 

 So the total partition function of the system  is given by 

 

𝒁 =  
𝐬𝐢𝐧𝐡𝒙  𝟏+

𝟏

𝟐𝑱
 

𝐬𝐢𝐧𝐡
𝒙

𝟐𝑱

 

𝑵

 

(39) 

Now we will be in a position to calculate thermodynamic properties of the system. 

Helmholtz Free Energy(𝑭): 

 

 
𝑭 = −𝑵𝒌𝑩𝑻  𝐥𝐧 𝐬𝐢𝐧𝐡 𝒈𝝁𝑩𝚮𝐉𝛃 𝟏+

𝟏

𝟐𝐉
  − 𝐥𝐧 𝐬𝐢𝐧𝐡  

𝒈𝝁𝑩𝚮𝐣𝛃

𝟐𝐉
   

(40) 

Magnetization 𝑴: Since 𝑴 = − 
𝝏𝑭

𝝏𝚮
 
𝑻,𝑵 

 

 
𝑴 = 𝑵 𝒈𝝁𝑩𝑱   𝟏 +

𝟏

𝟐𝑱
 𝐜𝐨𝐭𝐡  𝒈𝝁𝑩𝚮𝑱𝜷 𝟏+

𝟏

𝟐𝐉
  

−  
𝟏

𝟐𝑱
 𝐜𝐨𝐭𝐡  

𝒈𝝁𝑩𝚮𝑱𝜷

𝟐𝑱
   

(41) 

Or 

  𝑴 = 𝑵𝒈𝝁𝑩𝑱 𝑩𝑱 𝒈𝝁𝑩𝚮𝑱𝜷  (42) 

Where 𝑩𝑱 𝒈𝝁𝑩𝚮𝑱𝜷  is a Brillouin function of order 𝑱, where 𝑱 is the relevant quantum 

number. The plot of the Brillouin function is given in Figure 2 below: 
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Figure 2 Brillouin function for sample values of 𝑱 

From Figure 2, it is clear that large values of 𝒈𝝁𝑩𝚮𝑱𝜷 ≫ 𝟏 i.e for strong field and low 

temperature, the Brillouin function approaches 1 for all values of 𝑱, showing state of 

magnetic saturation. However, for 𝒈𝝁𝑩𝚮𝑱 ≪ 𝟏 i.e.weak field and high temperature, the 

Brillouin function, knowing that 𝐜𝐨𝐭𝐡 𝒙 ≅
𝟏

𝒙
+

𝒙

𝟑
 for 𝒙 ≪ 𝟏 so that Brillouin function can 

be written as 

 
𝑩𝑱 𝒙 ≅  𝟏+

𝟏

𝟐𝑱
  

𝟏

 𝒈𝝁𝑩𝚮𝑱𝜷  𝟏+
𝟏

𝟐𝐉
  

+
 𝒈𝝁𝑩𝚮𝑱𝜷  𝟏+

𝟏

𝟐𝐉
  

𝟑
  − 

𝟏

𝟐𝑱
  

𝟏

 
𝒈𝝁𝑩𝚮𝑱𝜷

𝟐𝒋
 

+
 𝒈𝝁𝑩𝚮𝑱𝜷 

𝟏

𝟐𝐉
  

𝟑
  

(43) 

Or 

 
𝑩𝑱 𝒙 ≅

𝒈𝝁𝑩𝚮𝑱𝜷

𝟑
  𝟏+

𝟏

𝟐𝑱
 
𝟐

 − 
𝟏

𝟐𝑱
 
𝟐

 =
𝒈𝝁𝑩𝚮𝑱𝜷

𝟑
  𝟏+

𝟏

𝑱
  

(44) 

Therefore, 

 

 
𝑴 =

𝑵 𝒈𝝁𝑩 
𝟐𝑱( 𝑱 + 𝟏)

𝟑𝒌𝑩𝑻
𝐇 

(45) 

 Once again we get Curie Law: 

𝑩𝑱 𝒈𝝁𝑩𝚮𝑱𝜷  

𝒈𝝁𝑩𝚮𝑱𝜷 
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𝝌 =  

𝝏𝑴

𝝏𝑯
 =

𝑵 𝒈𝝁𝑩 
𝟐𝑱( 𝑱 + 𝟏)

𝟑𝒌𝑩𝑻
=
𝑪

𝑻
 

(46) 

Where, now 𝑪 =
𝑵 𝒈𝝁𝑩 

𝟐𝑱( 𝑱+𝟏)

𝟑𝒌𝑩
=

𝑵𝝁𝟐

𝟑𝒌𝑩
with 𝝁𝟐 =  𝒈𝝁𝑩 

𝟐𝑱( 𝑱 + 𝟏), a departure from classical 

result. 

In the limit 𝑱 → ∞, Brillouin function reduces toLangevin function: 

 𝟏+
𝟏

𝟐𝑱
 𝐜𝐨𝐭𝐡  𝒙  𝟏+

𝟏

𝟐𝐉
  −  

𝟏

𝟐𝑱
 𝐜𝐨𝐭𝐡  

𝒙

𝟐𝑱
 → 𝐜𝐨𝐭𝐡 𝒙 −

 
𝟏

𝟐𝑱
 𝟐𝒋

𝒙
= 𝐜𝐨𝐭𝐡 𝒙 −

𝟏

𝒙
 

This is expected, 𝑱 → ∞ amounts to saying that there are tremendously large orientations 

in which the magnetic dipoles can align, this situation is the same as in the classical case 

and should yield the classical result. 

4. Equipartition Theorem 

Equipartition theorem also known as law of equipartition of energy is a classical theorem. 

According to it in classical limiting case every canonical variable (generalized position 

and momentum) entering quadratically or harmonically in a Hamiltonian 

function(Energy) has a mean thermal energy 
𝒌𝑩𝑻

𝟐
. For example, Hamiltonian function in 

three dimensions may be written as 

 
𝑯 =

𝒑𝟐

𝟐𝒎
+
𝟏

𝟐
𝒎𝝎𝟐𝒓𝟐 +

𝟏

𝟐

𝑳𝟐

𝑰
+

(𝑬𝟐 + 𝑩𝟐)

𝟖𝝅
 

(47) 

This Hamiltonian represents energy possessed by a molecule which is respectively made 

up of translational kinetic energy, harmonic potential energy, rotational kinetic energy 

and electromagnetic energy in an electromagnetic field. Each term is quadratic in one of 

the canonical variables. Therefore, according to law of equipartition of energy, in three 

dimensions.Thus thermal energy 𝑬 is given by 
𝟑𝒌𝑩𝑻

𝟐
+

𝟑𝒌𝑩𝑻

𝟐
+  𝒌𝑩𝑻 + 𝟐𝒌𝑩𝑻, here we 

have three canonical variables for translational motion, three for vibrational motion, two 

for rotational motion and two each for electrical energy and magnetic energy. This 

theorem can be proved easily using canonical distribution function. In this section we 

prove this result with a slightly sophisticated approach. 

Proof: Suppose we have a classical system of 𝑵 particles with 𝟔𝑵 generalized 

coordinates (𝒒𝒊,𝒑𝒊), where 𝒊  goes from 1 to 𝟑𝑵, giving a total of 𝟔𝑵 coordinates. We are 

interested in calculating the mean value of the quantity 𝒙𝒊
𝝏𝑯

𝝏𝒙𝒋
, where 𝒙𝒊and 𝒙𝒋 are any of 

the 𝟔𝑵 coordinates. In canonical ensemble it is given by: 
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 𝒙𝒊
𝝏𝑯

𝝏𝒙𝒋
 =  

 𝒆−𝜷𝑯(𝒒,𝒑)  𝒙𝒊
𝝏𝑯

𝝏𝒙𝒋
 𝒅𝝎

 𝒆−𝜷𝑯(𝒒,𝒑)𝒅𝝎
 

(48) 

Where 𝒅𝝎 = 𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩.  Out of 𝒅𝝎 let us pick up integration over 𝒙𝒋 in the numerator 

and do this integration by parts. First we note that 𝒆−𝜷𝑯 𝒒,𝒑  𝒙𝒊
𝝏𝑯

𝝏𝒙𝒋
 = −

𝟏

𝜷
𝒙𝒊 

 𝝏𝒆−𝜷𝑯 𝒒,𝒑 

𝝏𝒙𝒋
 so 

equation (48) can be written as 

 

 𝒙𝒊
𝝏𝑯

𝝏𝒙𝒋
 =  −

𝟏

𝜷

 𝒙𝒊 
 𝝏𝒆−𝜷𝑯 𝒒,𝒑 

𝝏𝒙𝒋
 𝒅𝒙𝒋𝐝𝛚𝒓𝒆𝒎𝒂𝒊𝒏𝒈 𝒄𝒐−𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔

 𝒆−𝜷𝑯(𝒒,𝒑)𝒅𝝎
 

(49) 

So integral over 𝒙𝒋 becomes 

 
 𝒙𝒊 

 𝝏𝒆−𝜷𝑯 𝒒,𝒑 

𝝏𝒙𝒋
 𝒅𝒙𝒋 =   𝒙𝒊  𝒆

−𝜷𝑯 𝒒,𝒑  
𝒙𝒋𝟏

𝒙𝒋𝟐
 −   

𝝏𝒙𝒊
𝝏𝒙𝒋

 𝒆−𝜷𝑯 𝒒,𝒑  𝒅𝒙𝒋 
(50) 

 To take limits over the first term we note that there are two possibilities: 

(i) If  𝒙𝒋 are momentum co-ordinates, the kinetic energy tends to infinity at 

extremely large values, making Hamiltonian infinite and  𝒆−𝜷𝑯 𝒒,𝒑 →  𝟎. 

(ii) If 𝒙𝒋 happens to be position co-ordinates, the limits mean on the walls of the 

container in which system is enclosed, where potential energy is infinite and 

once again Hamiltonian becomes infinite leading to  𝒆−𝜷𝑯 𝒒,𝒑 →  𝟎. 

Thus we can conclude that first term vanishes. So equation (50) becomes 

 
 𝒙𝒊 

 𝝏𝒆−𝜷𝑯 𝒒,𝒑 

𝝏𝒙𝒋
 𝒅𝒙𝒋 =    −   

𝝏𝒙𝒊
𝝏𝒙𝒋

 𝒆−𝜷𝑯 𝒒,𝒑  𝒅𝒙𝒋

= −   𝜹𝒊𝒋 𝒆
−𝜷𝑯 𝒒,𝒑  𝒅𝒙𝒋 

(51) 

Hence equation (49) can be written as 

 
 𝒙𝒊

𝝏𝑯

𝝏𝒙𝒋
 =  

𝟏

𝜷

 𝜹𝒊𝒋 𝒆
−𝜷𝑯 𝒒,𝒑  𝒅𝒙𝒋𝐝𝛚𝒓𝒆𝒎𝒂𝒊𝒏𝒈 𝒄𝒐−𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔

 𝒆−𝜷𝑯(𝒒,𝒑)𝒅𝝎

=
𝜹𝒊𝒋

𝜷

  𝒆−𝜷𝑯 𝒒,𝒑 𝐝𝛚 

 𝒆−𝜷𝑯(𝒒,𝒑)𝒅𝝎
=
𝜹𝒊𝒋

𝜷
= 𝜹𝒊𝒋𝒌𝑩𝑻 

(52) 

This is an extremely general result and is independent of the precise form of the 𝑯(𝒒,𝒑). 

From equation (52) the following results follow immediately: 
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If 𝒙𝒊 = 𝒙𝒋 = 𝒑𝒊  𝒑𝒊
𝝏𝑯

𝝏𝒑𝒋
 = 𝒌𝑩𝑻 

  𝒑𝒊
𝝏𝑯

𝝏𝒑𝒋
 

𝟑𝑵

𝒊=𝟏

= 𝟑𝑵𝒌𝑩𝑻 

If 𝒙𝒊 = 𝒙𝒋 = 𝒒𝒊  𝒒𝒊
𝝏𝑯

𝝏𝒒
 = 𝒌𝑩𝑻 

  𝒒𝒊
𝝏𝑯

𝝏𝒒𝒊
 = 𝟑𝑵𝒌𝑩𝑻 

What about the statement of the law of equipartion of energy made earlier that every 

canonical variable (generalized position and momentum) entering quadratically or 

harmonically in a Hamiltonian function(Energy) has a mean thermal energy
𝒌𝑩𝑻

𝟐
 

This can be checked easily. Let us take a Hamiltonian which is is a quadratic  function of 

co-ordinates, by suitable canonical transformation, it can be converted into a form: 

 𝑯 =  𝑨𝒋𝑷𝒋
𝟐

𝒊

+ 𝑩𝒋𝑸𝒋
𝟐

𝒊

 
(53) 

Where, 𝑸𝒋and 𝑷𝒋 are canonically conjugate transformed coordinates and 𝑨𝒋 and 𝑩𝒋 are 

suitable constants. 

Then it immediately follows that 

 
  𝑷𝒋

𝝏𝑯

𝝏𝒑𝒋
+ 𝑸𝒋

𝝏𝑯

𝝏𝒒𝒋
 

𝒋

= 𝟐𝑯 
(54) 

Therefore, from the table it follows that 

 
 𝑯 =

𝟏

𝟐
   𝑷𝒋

𝝏𝑯

𝝏𝑷𝒋
 +  𝑸𝒋

𝝏𝑯

𝝏𝑸𝒋
  

𝒋

=
𝟏

𝟐
 𝟔𝑵𝒌𝑩𝑻 =

𝟏

𝟐
𝒇𝒌𝑩𝑻 

(55) 

Here 6N are the number of degrees of freedom corresponding to number of non-zero 

coefficients in  the transformed Hamiltonian (53). One can immediately conclude that 

corresponding to each quadratic term in the Hamiltonian there is a contribution of 
𝟏

𝟐
𝒌𝑩𝑻, 

proving the statement providing an alternative proof for the equipartition theorem. 

Applications of law of equipartition: 

Law of equipartition theorem provides a back of the stamp method to calculate in 

classical regime (i.e. at sufficiently high temperature and low density) to calculate 

internal energy and specific heat. Quantum mechanically a system has discrete energy 

levels, however at sufficiently high temperatures, the spacing 𝚫𝑬 between energy levels 

is ≪ 𝒌𝑩𝑻. One can then treat discrete energy level structure as a continuum and law of 
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equipartition which is valid in classical regime can be applied. In the following we look 

at application of equipartition theorem in some well-known systems. 

A monoatomic gas: Single atom in a monoatomic gas has only translational kinetic 

energy,  so that total Hamiltonian of the  1mole monoatomic system can be written as 

 (𝑵
𝒊=𝟏

𝒑𝒊𝒙
𝟐

𝟐𝒎
+

𝒑𝒊𝒚
𝟐

𝟐𝒎
+

𝒑𝒊𝒛
𝟐

𝟐𝒎
), where N is Avagadro’s number, so that there are 𝟑𝑵 quadratic 

terms in momentum coordinate in it. According to law of equipartition of energy, the 

energy of this 𝑵 particle monoatomic gas can be written as 

 
𝑬 = 𝟑𝑵

𝒌𝑩𝑻

𝟐
=
𝟑

𝟐
𝑹𝑻 

(56) 

The molar specific heat at constant volume 𝑪𝒗 =
𝟑

𝟐
𝑹. Using 𝑪𝒑 − 𝑪𝒗 = 𝑹, specific heat 

at constant pressure is then given by 𝑪𝒑 =
𝟓

𝟐
𝑹. The ratio of the two specific heats 

𝜸 =
𝑪𝒑

𝑪𝒗
=

𝟓

𝟑
, a well-known result.  

A diatomic gas: Each particle of the gas in thios case is made up of a diatomic molecule, 

which can be assumed to be a dumb bell shaped rigid rotator, with arotational symmetry 

about the line joining the nuclei of the two atoms along Z-axis. So the Hamiltonian of the 

diatomic molecule has three translational kinetic energy terms quadratic in three 

components of the linear momentum and two terms corresponding to rotational kinetic 

energy quadratic in     
𝒑𝒊𝒙
𝟐

𝟐𝒎
+

𝒑𝒊𝒚
𝟐

𝟐𝒎
+

𝒑𝒊𝒛
𝟐

𝟐𝒎
  +  

𝑱𝒊𝒙
𝟐

𝟐𝑰
+

𝑱𝒊𝒚
𝟐

𝟐𝑰
  𝑵

𝒊=𝟏 where 𝑱 is angular momentum 

and 𝑰 moment of inertia. Hamiltonian thus has 5N quadratic terms.According to law of 

equipartition of energy the energy of this N diatomic molecule system can be written as 

 
𝑬 =

𝟓

𝟐
𝑵𝒌𝑩𝑻 =

𝟓

𝟐
𝑹𝑻 

(57) 

Where 𝑵 is Avagadro’s number. 

The molar specific heat at constant volume 𝑪𝒗 =
𝟓

𝟐
𝑹. Using 𝑪𝒑 − 𝑪𝒗 = 𝑹, specific heat 

at constant pressure is then given by 𝑪𝒑 =
𝟕

𝟐
𝑹. The ratio of the two specific heats 

(𝜸 =
𝑪𝒑

𝑪𝒗
=

𝟕

𝟓
, a well-known result which agree very nicely with experimental results at 

room temperature. It must be mentioned here that if we relax the condition of rigid 

molecule in this discussion we expect molecule to vibrate as a one dimensional harmonic 

oscillator having energy which is partly kinetic and partly kinetic contributing two 

additional terms so that each molecule contributes vibrational kinetic energy of 𝟐 ×
𝟏

𝟐
𝒌𝑩𝑻, so that  

 
𝑬 =

𝟓

𝟐
𝑵𝒌𝑩𝑻+𝑵 𝒌𝑩𝑻 =

𝟕

𝟐
𝑹𝑻 

(58) 
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So that 𝑪𝑽 =
𝟕

𝟐
𝑹,  𝑪𝒑 =

𝟗

𝟐
𝑹 and 𝜸 =

𝟗

𝟕
. The observed values do not agree with 

experiments indicating that at room temperature diatomic molecule has no vibrational 

motion. The vibrations get excited only in the case of high temperature limit.  

A crystalline solid: 

A simple model of crystalline solid consists of a collection of atoms,  with each lattice 

having one atom, where it can not move or rotate but can behave as an independent 

harmonic oscillator. Each oscillator having 6 quadratic terms three for kinetic energy and 

three for potential energy:  
𝒑𝒊𝒙
𝟐

𝟐𝒎
+

𝒑𝒊𝒚
𝟐

𝟐𝒎
+

𝒑𝒊𝒛
𝟐

𝟐𝒎
  +  

𝟏

𝟐
𝑲(𝒒𝒊𝒙

𝟐 + 𝒒𝒊𝒚
𝟐 + 𝒒𝒊𝒛

𝟐 )  . So according to 

law of equipartition energy, we have energy of one mole of a solid: 

 
 𝑬 = 𝟔𝑵

𝟏

𝟐
𝒌𝑩𝑻 = 𝟑 𝑹𝑻 

(59) 

Thus molar specific heat of a solid at constant volume 𝑪𝒗 = 𝟑𝑹, well-known Dulong and 

Petit’s law. This is found to be the case at high temperature, but is not true at low 

temperatures and we need to go beyond classical law of equipartition of energy and 

quantum mechanics invoked as was done by Einstein. 

 

5. Virial Theorem:  

In classical mechanics the products 𝒑𝒊
𝝏𝑯

𝝏𝒑𝒊
= 𝒑𝒊 𝒒𝒊  and 𝒒𝒊

𝝏𝑯

𝝏𝒒𝒊
= −𝒒𝒊 𝒑𝒊  have a special 

significance. The second expression which is a product of position coordinate and 

generalized force is called virial and when summed over all i its mean value gives virial 

theorem of statistical mechanics: 

 
𝓥𝒊𝒅 =   𝒒𝒊 𝒑𝒊 

𝟑𝑵

𝒊=𝟏
   = −  𝒒𝒊

𝝏𝑯

𝝏𝒒𝒊

𝟑𝑵

𝒊=𝟏
 = −𝟑𝑵𝒌𝑩𝑻 

(60) 

 

 Virial has a very interesting relationship with the physical quantities of a system and 

starting from it equation of state can be derived. Let us take the case of an ideal gas. It is 

enclosed in a container and walls provide the only external force to keep the gas 

confinedin the form of external pressure 𝑷. So here we have a forse −𝑷𝒅𝑺       on an area 

element 𝒅𝑺       of the wall. The virial of the ideal gas can be calculated as: 

 

𝓥𝒊𝒅 =  𝒒𝒊 𝒑𝒊 
𝟑𝑵

𝒊=𝟏
  =  𝒒𝒊 𝑭𝒊

𝟑𝑵

𝒊=𝟏
= −𝑷  𝒓  .𝒅𝒔     

𝒔

 

(61) 
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Where 𝒓   is the position vector corresponding to the surface element with a particle in its 

vicinity. Using divergence theorem we have  

 

𝓥𝒊𝒅 =  −𝑷   𝛁   .

𝑽

𝒓   𝒅𝑽 = −𝟑𝑷𝑽  

(62) 

Applying Virial Theorem, we have ideal equation of state: 

 𝑷𝑽 = 𝑵𝑲𝑻 (63) 

Furthermore, Kinetic energy of an ideal gas say 𝑬𝒌 =
𝟑

𝟐
𝑵𝒌𝒃𝑻 = −

𝓥𝒊𝒅

𝟐
, therefore, 

 𝓥𝒊𝒅 = −𝟐𝑬𝒌 (64) 

 

Virial has many interesting applications where it can from the knowledge of two particle 

potential be used to calculate the equation of state of the system, which becomes very 

useful in calculation of pressure computationally. 

6. Density of State over Energy: 

 We have till this point focused on the number of microstates in a region of phase space 

and arrived at a result that for a system with f degrees of freedom, a volume  𝟐𝝅ℏ 𝒇 in 

the phase space contains one microstate. However, in many practical situations, e.g. in 

condensed matter physics we are interested in finding the number of states which are 

available to it in a small energy interval 𝝐and 𝝐+ 𝒅𝝐. This important number can be 

obtained if we know relation between energy (𝝐) and momentum (𝒑), also called 

dispersion relation. These relations for a free particle system for non-relativistic, ultra 

relativistic (mass neglected or mass less particles)  and relativistic particles are given in 

the table below: 

Table 1 Dispersion relation for a free particle system 

System Dispersion relation 

Non-relativistic 
𝝐 =

𝒑𝟐

𝟐𝒎
 

Relativistic 𝝐𝟐 = 𝒄𝟐𝒑𝟐 +𝒎𝟐𝑪𝟒 

Ultra relativistic 𝝐 = 𝒄𝒑  

Let us derive for a three dimensional system, the density of states 𝓓(𝝐), the number of 

states of a particle per unit volume per unit energy range about 𝝐. 



  
____________________________________________________________________________________________________ 

Physics 
 

PAPER No. 10 : Statistical Mechanics 

MODULE No.14 : Ensemble Theory(classical)-IV (Canonical Ensemble( More Applications), 

Equipartition Theorem   Virial Theorem and Density of States) 

 

Let us begin by counting the number of states for a free particle in three dimensions in 

small region of phase space 𝒅𝟑𝒓 𝒅𝟑𝒑, then since particle has three degrees of freedom we 

have  

 
Number of states in phase space volume𝒅𝟑𝒓 𝒅𝟑𝒑 =

𝒅𝟑𝒓𝒅𝟑𝒑

 𝟐𝝅ℏ 𝟑
 

(65) 

.  

If the particles have some internal degrees of freedom, let us denote this by 𝒈 then the 

abover relation becomes 

 
Number of states in phase space volume𝒅𝟑𝒓 𝒅𝟑𝒑 = 𝒈

𝒅𝟑𝒓𝒅𝟑𝒑

 𝟐𝝅ℏ  𝟑 
(66) 

Let us assume that system is homogeneous, then this number is independent of the 

position of the phase space volume element. Then we can integrate over the postion 

coordinates to obtain 

 
Number of states in  momentum  space volume𝒅𝟑𝒑 = 𝒈

𝑽𝒅𝟑𝒑

 𝟐𝝅ℏ 𝟑
 

(67) 

Now if we take system to be isotropic, this number depends only on the magnitude of 

momentum 𝒑   , we can then integrate over  angular variables 𝜽 and 𝝓, so that we get  

 
Number of states between 𝒑 and 𝒑+ 𝒅𝒑 = 𝒈

 𝟒𝝅𝑽𝒑𝟐𝒅𝒑

 𝟐𝝅ℏ 𝟑
 

(68) 

 Now let 𝓓(𝝐) be the number of states of a particle per unit volume per unit energy range 

about 𝝐 then 

 
𝑽𝓓 𝝐 𝒅𝝐 =  𝒈

 𝟒𝝅𝑽𝒑𝟐𝒅𝒑

 𝟐𝝅ℏ 𝟑
 

(69) 

Or  

 
 𝓓 𝝐 =  𝒈

 𝟒𝝅 𝒑𝟐

 𝟐𝝅ℏ 𝟑
𝒅𝒑

𝒅𝝐
 

(70) 

Now by using dispersion relations given in Table 1, we can get density of states for each 

of the cases for a three dimensional system as given in Table 2 below 
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Table 2 Density of states over energy for a three dimensional system 

System Dispersion relation 𝒅𝒑

𝒅𝝐
 

𝓓 𝝐  

Non-

relativistic 𝝐 =
𝒑𝟐

𝟐𝒎
  𝟐𝒎𝟑𝝐 −

𝟏

𝟐 𝒈

𝟒𝝅𝟐
 
𝟐𝒎

ℏ𝟐 
 

𝟑

𝟐

𝝐
𝟏

𝟐 

Relativistic 𝝐𝟐 = 𝒄𝟐𝒑𝟐 +𝒎𝟐𝒄𝟒 𝟐𝝐

𝑪
 𝝐𝟐 −𝒎𝟐𝒄𝟒 −

𝟏

𝟐  𝒈 

𝟐𝝅𝟐
 𝝐 𝝐𝟐 −𝒎𝟐𝒄𝟒 

𝟏

𝟐

 𝒄ℏ 𝟑
 

Ultra 

relativistic 
𝝐 = 𝒄𝒑  𝟏

𝒄
 

𝒈

𝟐𝝅𝟐
𝝐𝟐

  ℏ𝒄 𝟑
 

Similarly density of states for two dimensional systems, one dimensional systems and 

zero dimensional systems can be obtained. 

7. Summary 

In this module we have learnt  

 How the properties from the knowledge of patition function of the following 

systems their thermodynamic properties can be obtained: 

i. A system of harmonic oscillators: 𝑯 =   
𝒑𝒊
𝟐

𝟐𝒎
+

𝟏

𝟐
𝒎𝝎𝟐𝒒𝒊

𝟐 𝑵
𝒊=𝟏  

Physical Quantity Classical approach Quantum Approach 

Partition function 𝒁 = 𝒁𝟏
𝑵 =  𝜷ℏ𝝎 −𝑵 

𝒁 =    𝟐 𝐬𝐢𝐧𝐡 
𝟏

𝟐
𝜷ℏ𝝎  

−𝑵

 

Helmholtz free energy 
 𝑭 = 𝑵𝒌𝑩𝑻 𝐥𝐧

ℏ𝝎

𝒌𝑩𝑻
 𝑭 = 𝑵 

𝟏

𝟐
ℏ𝝎 + 𝒌𝑩𝑻 𝐥𝐧 𝟏 − 𝒆

−𝜷ℏ𝝎   

Entropy 
𝑺 = 𝑵𝒌𝑩  𝟏 − 𝐥𝐧

ℏ𝝎

𝒌𝑩𝑻
  𝑺 = 𝑵𝒌𝑩   

𝟏

𝟐
𝜷ℏ𝝎𝐜𝐨𝐭𝐡  

𝟏

𝟐
𝜷ℏ𝝎  

−  𝐥𝐧  𝟐 𝐬𝐢𝐧𝐡 
𝟏

𝟐
𝜷ℏ𝝎    

Internal Energy 𝑬 = 𝑵𝒌𝑩𝑻 
𝑬 =  

𝟏

𝟐
𝑵ℏ𝝎 𝐜𝐨𝐭𝐡  

𝟏

𝟐
𝜷ℏ𝝎 =  

Pressure 𝑷 = 𝟎 𝑷 = 𝟎 

Chemical potential 
𝝁 = 𝑵𝒌𝑩𝑻 𝐥𝐧

ℏ𝝎

𝒌𝑩𝑻
 𝝁 =   

𝟏

𝟐
ℏ𝝎+ 𝒌𝑩𝑻 𝐥𝐧 𝟏 − 𝒆

−𝜷ℏ𝝎   

Specific heat 𝑪𝑷 = 𝑪𝑽  = 𝒌𝑩𝑻 
𝑪𝑷 = 𝑪𝑽  = 𝑵𝒌𝑩 ℏ𝝎𝜷 

𝟐
𝒆𝜷ℏ𝝎

 𝒆𝜷ℏ𝝎 − 𝟏 𝟐
 

In the classical limit 
ℏ𝝎

𝒌𝑩𝑻
≪ 𝟏 all quantum mechanical results approach  classical results. 

ii. Para-magnetism (Classical and Quantum Mechanical Treatment) 

The Hamiltonian for a classical system of magnetic dipoles in a magnetic field is given by 
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𝑯 = − 𝝁𝒊    

𝑵

𝒊=𝟏

.𝚮   = − 𝝁𝒊

𝑵

𝒊=𝟏

𝚮𝐜𝐨𝐬 𝜽𝒊 = −𝑵𝝁𝚮 𝐜𝐨𝐬𝜽

𝜽

 

 

Physical  Quantity Classical approach Quantum Approach 

Partition function 
𝒁 =  =  𝟒𝝅

𝐬𝐢𝐧𝐡(𝜷𝝁𝚮)

 𝛃𝛍𝚮 
 
𝑵

 
𝒁 =  

𝐬𝐢𝐧𝐡𝒙  𝟏+
𝟏

𝟐𝑱
 

𝐬𝐢𝐧𝐡
𝒙

𝟐𝑱

 

𝑵

 

  𝒘𝒉𝒆𝒓𝒆 𝒙 = 𝒈𝝁𝑩𝚮𝐣𝜷 

Helmholtz free 

energy 
𝑭 = −𝑵𝐤𝐁𝐓 𝐥𝐧  𝟒𝝅

𝐬𝐢𝐧𝐡(𝜷𝝁𝚮)

 𝛃𝛍𝚮 
  𝑭 = −𝑵𝒌𝑩𝑻  𝐥𝐧 𝐬𝐢𝐧𝐡 𝒙 𝟏 +

𝟏

𝟐𝐉
  

− 𝐥𝐧 𝐬𝐢𝐧𝐡  
𝒙

𝟐𝐉
   

Magnetization 
𝑴 = − 

𝝏𝑭

𝝏𝚮
 
𝑻,𝑵 

= 𝑵 𝝁  𝐜𝐨𝐭𝐡𝜷𝝁𝚮

−
𝟏

 𝛃𝛍𝚮
 

= 𝑵𝝁𝑳 𝜷𝝁𝚮  

𝑴 = 𝑵 𝒈𝝁𝑩𝑱   𝟏+
𝟏

𝟐𝑱
 𝐜𝐨𝐭𝐡  𝒈𝝁𝑩𝚮𝑱𝜷  𝟏 +

𝟏

𝟐𝐉
  

−  
𝟏

𝟐𝑱
 𝐜𝐨𝐭𝐡  

𝒈𝝁𝑩𝚮𝑱𝜷

𝟐𝑱
  

= 𝑵𝒈𝝁𝑩𝑱 𝑩𝑱 𝒈𝝁𝑩𝚮𝑱𝜷  

 Magnetization in 

High magnetic field 

or  low temperature 

limit 

𝑴 =  𝑵 𝝁 𝑴 = 𝑵 𝒈𝝁𝑩𝑱 

Magnetization in high 

temperature  and low 

magnetic field limit 

𝑴 =  𝑵
𝝁𝟐𝐇

𝐤𝐁𝑻
 

 

𝑴 =
𝑵 𝒈𝝁𝑩 

𝟐𝑱( 𝑱+ 𝟏)

𝟑𝒌𝑩𝑻
𝐇 

Susceptibility (in high 

temperature  and low 

magnetic field limit) 

𝝌 =
𝝏𝑴

𝝏𝑯
=
𝑵𝝁𝟐

𝐤𝐁𝑻
=
𝑪

𝑻
,𝑪 =

𝑵𝝁𝟐

𝐤𝐁
 𝝌 =  

𝑵 𝒈𝝁𝑩 
𝟐𝑱  𝑱+ 𝟏 

𝟑𝒌𝑩𝑻
=
𝑪

𝑻
,

𝑪 =  
𝑵 𝒈𝝁𝑩 

𝟐𝑱( 𝑱+ 𝟏)

𝟑𝒌𝑩
 

 That law of equipartition theorem states that every canonical variable 

(generalized position and momentum) entering quadratically or harmonically in a 

Hamiltonian function(Energy) has a mean thermal energy 
𝐤𝐁𝐓

𝟐
 

 How to derive law of equipartition of energy in its most general form  

 𝒙𝒊
𝝏𝑯

𝝏𝒙𝒋
  = 𝜹𝒊𝒋𝒌𝑩𝑻 

Where 𝒙𝒊 and 𝒙𝒋 are any of the 𝟔𝑵 coordinates. 

 How to apply law of equipartition of energy to get in the classical limit, internal 

energy 𝑬, molar specific heat at constant volume 𝑪𝒗, molar specific heat at 

constant pressure 𝑪𝒑  and ratio of the specific heat 𝜸 for a monoatomic gas, for a 

diatomic gas (with and without vibrations) and a crystalline solid highlighting the 

limitations of the approach. 

 How to calculate virial of an ideal gas,  
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𝓥𝒊𝒅 =   𝒒𝒊 𝒑𝒊 
𝟑𝑵

𝒊=𝟏
  = −  𝒒𝒊

𝝏𝑯

𝝏𝒒𝒊

𝟑𝑵

𝒊=𝟏
 = −𝟑𝑵𝒌𝑩𝑻 

And how it can we used to get equation of state of the ideal gas. 

 How to calculate density of state over energy of a three dimensional gas of free 

particles 

 That density of state over energy 𝓓 𝝐 =  𝒈
 𝟒𝝅 𝒑𝟐

 𝟐𝝅ℏ 𝟑
𝒅𝒑

𝒅𝝐
for non-relativistic, 

relativistic and ultra relativistic(mass less )gas is given by 

System 𝓓 𝝐  
Non-

relativistic 
𝒈

𝟒𝝅𝟐
 
𝟐𝒎

ℏ𝟐 
 

𝟑

𝟐

𝝐
𝟏

𝟐 

Relativistic 
 𝒈 

𝟐𝝅𝟐
 𝝐 𝝐𝟐 −𝒎𝟐𝒄𝟒 

𝟏

𝟐

 𝒄ℏ 𝟑
 

Ultra 

relativistic 
𝒈

𝟐𝝅𝟐
𝝐𝟐

  ℏ𝒄 𝟑
 

Appendices 

A1 Expansion of a logarithmic function and 𝐜𝐨𝐭𝐡 𝒙 

𝐥𝐧 𝟏+ 𝒙 = 𝒙 −
𝒙𝟐

𝟐
+

𝒙𝟑

𝟑
−
𝒙𝟒

𝟒
+⋯for𝒙 ≪ 𝟏. 

𝐜𝐨𝐭𝐡 𝒙 =
𝟏

𝒙
+

𝒙

𝟑
−

𝒙𝟑

𝟒𝟓
+⋯for x<<1 

A2 Spreadsheet for plotting Langevinand Brillouin functions 
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